Convergence of Bergman measures for high powers of a line bundle
نویسنده
چکیده
Let L be a holomorphic line bundle on a compact complex manifold X of dimension n, and let e be a continuous metric on L. Fixing a measure dμ on X gives a sequence of Hilbert spaces consisting of holomorphic sections of tensor powers of L. We prove that the corresponding sequence of scaled Bergman measures converges, in the high tensor power limit, to the equilibrium measure of the pair (K,φ), where K is the support of dμ, as long as dμ is stably BernsteinMarkov with respect to (K,φ). Here the Bergman measure denotes dμ times the restriction to the diagonal of the pointwise norm of the corresponding orthogonal projection operator. In particular, an extension to higher dimensions is obtained of results concerning random matrices and classical orthogonal polynomials.
منابع مشابه
The Szegö Kernel on an Orbifold Circle Bundle
The analysis of holomorphic sections of high powers L of holomorphic ample line bundles L → M over compact Kähler manifolds has been widely applied in complex geometry and mathematical physics. Any polarized Kähler metric g with respect to the ample line bundle L corresponds to the Ricci curvature of a hermitian metric h on L. Any orthonormal basis {SN 0 , ..., S dN} of H(M,L ) induces a holomo...
متن کاملOn the Asymptotic Expansion of Bergman Kernel
We study the asymptotic of the Bergman kernel of the spin Dirac operator on high tensor powers of a line bundle.
متن کاملN ov 2 00 5 GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS
We study the near diagonal asymptotic expansion of the generalized Bergman kernel of the renormalized Bochner-Laplacian on high tensor powers of a positive line bundle over a compact symplectic manifold. We show how to compute the coefficients of the expansion by recurrence and give a closed formula for the first two of them. As consequence, we calculate the density of states function of the Bo...
متن کاملJa n 20 05 GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS
We study the near diagonal asymptotic expansion of the generalized Bergman kernel of the renormalized Bochner-Laplacian on high tensor powers of a positive line bundle over a compact symplectic manifold. We show how to compute the coefficients of the expansion by recurrence and give a closed formula for the first two of them. As consequence, we calculate the density of states function of the Bo...
متن کاملN ov 2 00 4 GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS
We study the near diagonal asymptotic expansion of the generalized Bergman kernel of the renormalized Bochner-Laplacian on high tensor powers of a positive line bundle over a compact symplectic manifold. We show how to compute the coefficients of the expansion by recurrence and give a closed formula for the first two of them. As consequence, we calculate the density of states function of the Bo...
متن کامل